
NOTES ON THE PRIME POLYNOMIAL THEOREM

ZEÉV RUDNICK

The zeta function for the polynomial ring Fq[t] is defined for Re(s) > 1
by the series

ζq(s) :=
∑

06=f∈Fq [t]

monic

1

|f |s

In these notes, we prove some basic properties of the zeta function, such
as the Euler product representation, and the “analytic continuation”, and
use these to prove the Prime Polynomial Theorem, and a generalization to
counting polynomials with given cycle structure.

0.1. Euler’s product formula.

Theorem 1. For Re(s) > 1,

ζ(s) =
∏

P prime

(1− |P |−s)−1

Here the infinite product means the limit of the finite subproducts as
follows: For M > 0 define

ζ(M)(s) :=
∏

degP≤M
(1− |P |−s)−1

to be the partial Euler product; this is a finite product. The infinite product
is defined as the limit limM→∞ ζ

(M)(s) (assuming it exists).

Proof. We will show that for Re(s) > 1,

lim
M→∞

ζ(M)(s) = ζq(s)

(in fact uniformly for any Re(s) ≥ 1 + δ, δ > 0), which is the meaning of
the claim.

We expand

1

1− |P |−s
=
∞∑
k=0

1

|P |ks
=
∞∑
k=0

1

|P k|s

and so obtain

ζ(M)(s) =
∏

degP≤M

∞∑
k=0

1

|P k|s
=

∑
degPj≤M
kj≥0

1

|
∏
j P

kj
j |s
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The sum here goes over all monic f for which all prime factors have degree
≤ M , and each such f appears exactly once by the Fundamental Theorem
of Arithmetic in Fq[t] (unique factorization into primes).

Hence the difference ζ − ζ(M) is the sum over all monic f which have at
least one prime factor of degree > M :

ζq(s)− ζ(M)(s) =
∑

f s.t.∃P |f
degP>M

1

|f |s

Taking absolute values and using the triangle inequality (recall |As| =

ARe(s)) gives ∣∣∣ζq(s)− ζ(M)(s)
∣∣∣ ≤ ∑

f s.t.∃P |f
degP>M

1

|f |Re s

We note that each f appearing above has degree > M , hence if we replace
the sum by the sum over all f of degree > M , we will increase the result
because we are adding positive terms. Hence∣∣∣ζq(s)− ζ(M)(s)

∣∣∣ ≤ ∑
deg f>M

1

|f |Re(s)

The sum on the RHS tends to zero as M →∞ (we should have seen this by
now) because∑

deg f>M

1

|f |Re(s)
=

∞∑
n=M+1

∑
deg f=n

1

|f |Re(s)

=
∞∑

n=M+1

1

qnRe(s)
#{deg f = n,monic}

=
∞∑

n=M+1

qn

qnRe(s)
=
q(M+1)(1−Re(s))

1− q1−Re(s)

which for any fixed Re(s) > 1 tends to zero as M →∞. �

Exercise 1. The divisor function dk(f) for a monic polynomial f ∈ Fq[x]

is the number of k-tuples (a1, . . . , ak) ∈ Fq[x]k of monic polynomials so that
f = a1 · · · · · ak.

Show that for Re(s) > 1, ∑
f monic

dk(f)

|f |s
= ζq(s)

k.

Exercise 2. The Möbius function for Fq[x] is defined as µ(f) = (−1)k if
f = cP1 · · · · · Pk is a product of k distinct monic irreducibles, c ∈ F∗q, and
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µ(f) = 0 otherwise. Show that for Re(s) > 1,∑
f monic

µ(f)

|f |s
=

1

ζq(s)
.

0.2. Analytic continuation and rationality.

Theorem 1. The zeta function ζq(s), initially defined for Re(s) > 1, has an
analytic continuation to the entire complex s-plane, except for simple poles
when qs = q. In fact it is given by the simple rational function of q−s:

ζq(s) =
1

1− q1−s

The “analytic continuation” here does not have anything to do with con-
vergence of the infinite series at s = 1, in fact it diverges there.

Lets start with a simpler example, before even defining rigorously what
is an analytic continuation: Show that the series

G(s) := 1 + s+ s2 + · · · =
∞∑
n=0

sn

which is absolutely convergent for |s| < 1, has an ”analytic continuation” to
all s except for a singularity (a ”simple pole”) at s = 1.

Solution: We know how to sum a geometric series! For |s| < 1 (so still in
the region of convergence), the sum is

(1) G(s) =
1

1− s
!

Now note that the right-hand side of (1), which is 1/(1 − s), actually
makes sense for all s, except for s = 1. Therefore equation (1) gives the
required ”analytic continuation” of G(s).

****************

An aside: Here is a proper definition of the term (for people who have
taken the course on complex variables):

Definition 2. Given an analytic function f(s), defined in a domain Ω ⊂ C,
a meromorphic continuation of f is a meromorphic function F (s), defined

on a bigger domain Ω̃ ⊃ Ω, which coincides with f on Ω.

Note that if F1, F2 are meromorphic continuations of f , both defined on
the same domain Ω̃, then necessarily F1 = F2 on Ω̃. This is because their dif-
ference F1−F2 vanishes on the domain Ω, and since a non-zero meromorphic
function has isolated zeros, this forces F1 − F2 to vanish identically.

****************
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Now to proceed with the “analytic continuation” of ζq(s), which is defined
for Re(s) > 1 as

ζq(s) :=
∑

06=f∈Fq [t]
f monic

1

|f |s

One needs to check that the series converges absolutely in the half-plane
Re(s) > 1. Now lets rearrange the series (which is allowed because we have
absolute convergence):

∑
06=f∈Fq [t]
f monic

1

|f |s
=
∞∑
n=0

( ∑
deg f=n
f monic

1

|f |s
)

=
∞∑
n=0

1

qns
#{f ∈ Fq[t], monic , deg f = n}

=

∞∑
n=0

1

qns
qn

since the number of monic polynomials of degree n is qn.
Thus we find that for Re(s) > 1,

(2) ζq(s) =
∞∑
n=0

(q1−s)n =
1

1− q1−s

since when Re(s) > 1, we have |q1−s| = q1−Re(s) < 1. The right-hand side
of (2) now defines the required analytic continuation of ζq(s) to the entire
complex plane, with the exception of simple poles at qs = q1, that is at

s = 1 + 2π
√
−1

log q n, n = 0± 1,±2, . . . .

Exercise 3. Show that the residue at s = 1 of ζq is 1/ log q, that is

lim
s→1

(s− 1)ζq(s) =
1

log q
.

Exercise 4. Show that for k ≥ 2, the mean value of dk(f) over all monic
polynomials of degree n is given by the binomial coefficient

1

qn

∑
deg f=n
f monic

dk(f) =

(
n+ k − 1

k − 1

)
=

(n+ k − 1) · . . . · (n+ 1)

(k − 1)!
.

Exercise 5. Show that ∑
deg f=n
f monic

µ(f) = 0, n ≥ 2
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0.3. The Prime Polynomial Theorem. Let πq(n) be the number of
monic irreducibles P ∈ Fq[t] of degree n.

Exercise 6. Compute πq(1) = q.

Our goal is to prove the Prime Polynomial Theorem (PPT):

Theorem 2 (PPT). As qn →∞,

πq(n) =
qn

n
+O(

qn/2

n
) .

This is an analogue of the Prime Number Theorem (PNT), which states
that the number π(x) of primes p ≤ x is asymptotically equal to

π(x) ∼ Li(x) :=

∫ x

2

dt

log t
∼ x

log x
.

The proof we give goes via the zeta function for Fq[t], which we defined
as

ζq(s) :=
∑

06=f∈Fq [t]
f monic

1

|f |s
, <(s) > 1

and showed an Euler product representation

ζq(s) =
∏

P prime

(1− |p|−s)−1, <(s) > 1 .

We showed that it has an analytic continuation to all s ∈ C save for simple
poles where qs = q, via the formula

ζq(s) =
1

1− q1−s .

Setting

u := q−s

so that the half-plane <(s) > 1 is mapped to the disk |u| < q−1, we define

Z(u) := ζq(s) =
∑

06=f∈Fq [t]
f monic

udeg f

for which we have a product representation

(3) Z(u) =
∏

P prime

(1− udegP )−1, |u| < q−1 .

The resummation of ζq(s) is expressed as

(4) Z(u) =
1

1− qu
.
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0.4. The Explicit Formula. The von Mangoldt function is defined as
Λ(f) = degP , if f = cP k is a power of a prime P (k ≥ 1), and is zero
otherwise.

Exercise 7. Show that ∑
d|f

Λ(d) = deg f.

Define
Ψ(n) :=

∑
deg f=n
f monic

Λ(f)

which counts prime powers weighted by the degree of the corresponding
prime.

From the definition it is easy to see that

Lemma 3.
Ψ(n) =

∑
d|n

dπq(d) .

Exercise 8. Prove Lemma 3.

The fundamental fact is that there is a closed-form expression for Ψ(n):

Proposition 4 (The ”Explicit Formula”).

Ψ(n) = qn

Proof. We compute the logarithmic derivative uZ
′

Z = u d
du logZ of Z(u) in

two different ways:
a) From the Euler product (3) we obtain

u
Z ′

Z
(u) =

∑
P prime

deg(P ) · udegP

1− udegP

=
∑

P prime

deg(P )
∞∑
m=1

um degP

=
∑

f monic

Λ(f)udeg f

by the definition of the von Mangoldt function. Thus

(5) u
Z ′

Z
(u) =

∞∑
n=1

Ψ(n)un .

b) By the analytic continuation (4) of Z(u) we obtain

(6) u
Z ′

Z
(u) = u

d

du
log

1

1− qu
=
∑
n≥1

qnun .

Comparing (5) and (6) gives the result. �
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0.5. Proof of the PPT. We use Lemma 3 and the Explicit Formula to
obtain

(7)
∑
d|n

dπq(d) = Ψ(n) = qn .

Hence we find that for all m ≥ 1,

(8) mπq(m) ≤ qm .

Furthermore, from (7) we get

(9) 0 ≤ Ψ(n)− nπq(n) =
∑
d|n
d<n

dπq(d) ≤
∑
d|n
d<n

qd

the last step by (8).
The sum over divisors of n is difficult to understand, so we convert it to

a more tractable form by observing that a proper divisor d | n, d < n is at
most n/2, and then noting that throwing in some extra terms of the form
qd, which are non-negative, will only increase the result. Hence∑

d|n
d<n

qd ≤
n/2∑
d=1

qd =
qbn/2c+1 − q

q − 1
≤ qbn/2c

1− 1
q

≤ 2qn/2

Inserting in (9) gives

0 ≤ nπq(n)−Ψ(n) ≤ 2qn/2

and replacing Ψ(n) by qn and dividing by n gives

πq(n) =
qn

n
+O(

qn/2

n
)

which proves the Prime Polynomial Theorem. �

Exercise 9. Compute πq(n) for n = 2, 3, 4, 5, 6.

Exercise 10. Show that∑
degP≤N

1

|P |
∼ logN, N →∞

the sum over all prime polynomials (monic irreducibles) and in particular
that

∑
P 1/|P | =∞.

0.6. Polynomials with given cycle structure. The cycle structure of a
permutation σ of n letters is λ(σ) = (λ1, . . . , λn) if in the decomposition of σ
as a product of disjoint cycles, there are λj cycles of length j. In particular
λ1(σ) is the number of fixed points of σ.

Example: Lets take n = 3 and list all permutations in S3 and their cycle
structure: The identity element Id = (1)(2)(3) has 3 fixed points so λ(Id) =
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(3, 0, 0). A transposition, e.g. (12) = (12)(3), has 1 fixed point and one
2-cycle hence λ((12)) = (1, 1, 0). A 3-cycle has λ((123)) = (0, 0, 1).

For each partition λ ` n, denote by p(λ) the probability that a random
permutation on n letters has cycle structure λ:

p(λ) =
#{σ ∈ Sn : λ(σ) = λ}

#Sn

Cauchy’s formula for p(λ) is

(10) p(λ) =

n∏
j=1

1

jλj · λj !

In particular, this shows that the proportion of n-cycles in the symmetric
group Sn is 1/n.

Exercise 11. Prove Cauchy’s formula (10).

For f ∈ Fq[t] of positive degree n, we say its cycle structure is λ(f) =
(λ1, . . . , λn) if in the prime decomposition f =

∏
j Pj (we allow repetition),

we have #{P | f : degP = j} = λj . Thus we get a partition of deg f by
deg f =

∑
j jλj . We denote λ(f) ` deg f .

Examples:

• f is prime if and only if λ(f) = (0, 0, . . . , 0, 1).
• f is totally split in Fq[t], that is f(x) =

∏n
j=1(x − aj), aj ∈ Fq, iff

the cycle structure is λ(f) = (n, 0, . . . , 0).

We denote by Mn(Fq) the set of monic polynomials of degree n in Fq[t].
We claim that given a partition λ ` n, the probability that a random monic
polynomial f ∈ Mn(Fq) has cycle structure λ is asymptotic (as q → ∞)
to the probability that a random permutation of n letters has that cycle
structure:

Theorem 5. If λ ` n then for n fixed, as q →∞,

(11) #{f ∈Mn(Fq) : λ(f) = λ} = p(λ)qn +On

(
qn−1

)
(the implied constant depends on n).

Proof. To see this, note that to get a monic polynomial with cycle structure
λ, we pick any λ1 primes of degree 1, λ2 primes of degree 2, (irrespective of
the choice of ordering), and multiply them together. For a given degree j,
the number of polynomials which are products of λj primes each of degree

j is
(π(j)+λj−1

λj

)
, where π(j) is the number of primes of degree j. This is

because we are drawing λj primes from the total of π(j) primes of degree j,
with replacement and without ordering. Thus

#{f ∈Mn(Fq) : λ(f) = λ} =
n∏
j=1

(
π(j) + λj − 1

λj

)
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For j = 1, we use π(1) = q to see that the contribution is(
π(1) + λ1 − 1

λ1

)
=

(
q + λ1 − 1

λ1

)
=
qλ1

λ1!

(
1 +O(

1

q
)
)
.

For j ≥ 2 we use the Prime Polynomial Theorem in the form

π(j) =
qj

j
+O(

qj/2

j
) =

qj

j
(1 +O(

1

q
)) .

Hence

#{f ∈Mn(Fq) : λ(f) = λ} =

n∏
j=1

1

λj !
(
qj

j
(1 +O(

1

q
)))λj

= q
∑
jλj

n∏
j=1

1

jλj · λj !
(1 +O(q−1))

which by Cauchy’s formula (10) gives (11). �
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